

Iteration 2 (in-school)

Embedding Computational Thinking in School Science: Designs of an Automated-Greenhouse Project with Young Adolescents

David W. Jackson

Boston College & "Mills City Public Schools"

Doctoral Candidate &

"Out-of-School-Time Coordinator"

Iteration 3 (at-home)

Yihong Cheng

BC & "MCPS"

Doctoral Student &

"Out-of-School-Time Co-Advisor"

RESEARCH APPROACH

	<u>2018 & 2019</u> : In-school-time (IST)	<u>2020</u> : Out-of-school-time (OST)	
what & why	<u>CS4All [Computer Science for All] (what)</u> : many why's (Vogel, Santo, & Ching, 2017; Voogt et al., 2015)		
where	required school courses, including STEM (Voogt et al., 2015; Weintrop et al., 2016)	homes & community , and connections with school (Bevan et al., 2010; Moll et al., 1992)	
who	students, in small groups	youth, in family-units	
when	during the school day	anytime!	
how	student engagement in computational practices (Denning, 2017; Fredricks et al., 2016)	funds of knowledge (Moll et al., 1992); engagement interest (Jaïrvelaï & Renninger, 2014)	
Re- search ?'s	In five classrooms of a required 8 th grade science course, how does participation in an automated smart-greenhouse project with integrated computation influence students' social affective engagement ?	In ten households across three cities in the northeast US, how does participation in an automated hydroponics project with integrated computation influence youths' computational engagement and interest?	

METHODS

- Methodology
 - DBR: cultural psychology approach (Bell, 2004)
 - <u>Phenomenological</u>: understand lived experiences (Creswell, 2013)
- Setting & participants
 - <u>"Mills City"</u>: pluralistic (Paris, 2012) urban-ring city in US northeast
 - <u>Iteration #1</u>: one school; ~200 students and 2 teachers
 - <u>Iteration #2</u>: two schools; ~400 students and 5 teachers
 - Iteration #3: three cities; ~10 households, esp. those marginalized by inequitable systems and institutions (Cho et al., 2013)
- Data generation
 - Pre- & post-surveys (~90% matched)
 - Pre- & post-interviews (~6 students per teacher, per year)
 - Video and audio recording (~6-10 groups at each school)
- Data analysis
 - <u>t-tests of means</u>: computational experience, confidence, and interest
 - Coding: Process, emotion, & in vivo (Miles, Huberman, & Saldaña, 2014)
 - <u>Data from video</u>: "whole-to-part" method (Erickson, 2006)
 - <u>Convergence</u>: CAQDAS [Dedoose] as aid (Creswell & Plano Clark, 2018)

FINDINGS

Per Social Infrastructure Framework (Bielaczyc, 2006, 2013)

- 1. <u>Spring 2018 #1</u>: Sequential S-E-C Practices
 - 1. students: Groups of two "Technicians"
 - 2. <u>teachers</u>: **Co-**instructors
 - 3. planned learning: simplicity

- 2. <u>Spring 2019 #2</u>: Stress → Interactions → Engagement
 - 1. students: Groups of four "Parents"
 - 2. teachers: Lead instructor w/ support staff
 - 3. planned learning: flexibility

CONNECTIONS TO LITERATURE

- 1. Self-efficacy theory (Bandura, 1993; Schunk & DiBenedetto, 2016)
 - 1. Finer-grained data generation...
 - 2. ...in more diverse settings (esp. racial/ethnic & socioeconomic)
- 2. Social interdependence theory (Johnson & Johnson, 2009)...
 - 1. The combination of software, hardware, and plants promoted **positive interdependence** within and between groups.
 - 2. Stress and frustration sometimes impeded **promotive interaction**, but **social dynamics** and project characteristics helped to stimulate engagement.
- 3. Social infrastructure framework (Bielaczyc, 2006, 2013)
 - 1. Identify the most salient design considerations...
 - 2. ...to better understand research-practice trajectories of change

FUTURE WORK

Iteration #3: Summer 2020 ("LEaFS")*

- <u>socio-techno-spatial</u>: Indoor <u>two-tier</u> hydroponics system
- participation structures
 - Engages the <u>whole family</u>
 - Training high-school mentors
- <u>"outside world"</u>:
 - Community Cookbook
 - Cooking & Gardening
 Electronics & Programming

*again, per Social Infrastructure Framework of Bielaczyc (2006, 2013)

"SHOULDERS" WE'RE STANDING ON/WITH (REFERENCES)

Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28(2), 117–148.

Bell, P. (2004). On the theoretical breadth of design-based research in education. Educational Psychologist, 39(4), 243–253.

Cho, S., Crenshaw, K. W., & McCall, L. (2013). Toward a field of intersectionality studies: Theory, applications, and praxis. Signs: Journal of Women in Culture and Society, 38(4), 785-810.

Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). Los Angeles, CA: SAGE.

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). Los Angeles, CA: \$AGE.

Computer Science Teachers Association [CSTA]. (2017). CSTA K-12 Computer Science Standards, revised 2017. Retrieved from https://drive.google.com/file/d/0B0TIX1G3mywqbXpydGdIVk00Y1U/view

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33-39.

Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures and their rationales. In J. L. Green, G. Camilli, P. B. Elmore, A. Skukauskaite, & E. Grace (Eds.), Handbook of complementary methods in education research (pp. 177–191). Mahwah, NJ: Lawrence Erlbaum Associates.

Fredricks, J. A., Wang, M. T., Linn, J. S., Hofkens, T. L., Sung, H., Parr, A., & Allerton, J. (2016). Using qualitative methods to develop a survey measure of math and science engagement. Learning and Instruction, 43, 5–15.

Gresalfi, M., & Barab, S. (2011). Learning for a reason: Supporting forms of engagement by designing tasks and orchestrating environments. Theory into Practice, 50(4), 300-310.

Järvelä, S., & Renninger, K. A. (2014). Designing for learning: Interest, motivation, and engagement. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (2nd ed., pp. 668–685). New York, NY: Cambridge University Press.

Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38(5), 365–379.

Johnson, R. B. (2017). Dialectical pluralism: A metaparadigm whose time has come. Journal of Mixed Methods Research, 11(2), 156–173.

McIntosh, P. (1992). White privilege: Unpacking the invisible knapsack. In A. M. Filor (Ed.), Multiculturalism (pp. 30-36). Albany, NY: New York State Council of Education Associations.

Miles, M. B., Huberman, M. A., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). Los Angeles, CA: Sage Publications.

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory Into Practice, 31(2), 132–141.

NGSS Lead States. (2013). Volume 1: The Standards—Arranged by Disciplinary Core Ideas and by Topics. In Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

Onwuegbuzie, A. J., & Frels, R. K. (2013). Toward a new research philosophy for addressing social justice issues: Critical dialectical pluralism 1.0. International Journal of Multiple Research Approaches, 7(1), 9–26.

Pekrun, R., & Linnenbrink-Garcia, L. (2012). Academic emotions and student engagement. In S. L. Christenson, C. Wylie, & A. L. Reschly (Eds.), Handbook of research on student engagement (pp. 259–282). New York, NY: Springer.

Pollock, M. (Ed.). (2008). Everyday antiracism: Getting real about race in school. New York, NY: New Press.

Rodriguez, A. J. (2015). What about a dimension of engagement, equity, and diversity practices? A critique of the Next Generation Science Standards. Journal of Research in Science Teaching, 52(7), 1031–1051.

Sandoval, W. (2014). Conjecture mapping: An approach to systematic educational design research. Journal of the Learning Sciences, 23(1), 18–36.

Schunk, D. H., & DiBenedetto, M. K. (2016). Self-efficacy theory in education. In K. R. Wentzel & D. B. Miele (Eds.), Handbook of Motivation at School (2nd ed., pp. 34-54). New York, NY: Routledge.

Sinha, S., Rogat, T. K., Adams-Wiggins, K. R., & Hmelo-Silver, C. E. (2015). Collaborative group engagement in a computer-supported inquiry learning environment. International Journal of Computer-Supported Collaborative Learning, 10(3), 273–307.

Temple, W., & Shapiro, R. B. (2018). Computational rethinking – Applying CT in new contexts. In ICLS 2018 Proceedings (p. 1310). London, UK.

Vogel, S., Santo, R., & Ching, D. (2017). Visions of computer science education: Unpacking arguments for and projected impacts of CS4All initiatives. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education - SIGCSE '17 (pp. 609–614).

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20, 715–728.

david.jackson@bc.edu yihong.cheng@bc.edu

<EXTRA SLIDES START HERE>

...BUT FIRST, POSITIONALITY:

- Carrying my own "invisible knapsack"... (McIntosh, 1992)
- ...recognizing the value of diversity and social justice for people of both marginalized and privileged groups (Goodman, 2001)
- "engineer-turned-educator-with-a-research-habit"
- Working with the "Mills City" community (/context) (Pollock, 2008)
 - Resident June 2010 June 2019
 - "Out-of-school time coordinator" 4+ years
 - Urban ring (suburban | urban)
 - Cultural and linguistic diversity; gentrification; immigration

THEORETICAL ORIENTATIONS

broadly: dialectical pluralism (Johnson, R.B., 2017)... ...especially pragmatism & social constructivism... ...with an eye towards critical dialectical pluralism (Onwuegbuzie & Frels, 2013

By iteration:

- 1. self-efficacy theory (Bandura, 1993)
- 2. social interdependence theory (Johnson, D.W., & Johnson, R.T., 2009)
- 3. funds of knowledge (Moll et al., 1992)

CONCEPTUAL FRAMEWORK

Student engagement

*<u>Fredricks et al. (2016)</u>: social | {emotional, behavioral, & cognitive} *<u>Gresalfi & Barab (2011)</u>: procedural, conceptual, consequential,

critical

*<u>Sinha et al (2015)</u>: social, behavioral, cognitive,

conceptual-to-consequential

*<u>Pekrun & Linnenbrink-Garcia (2012)</u>: soc.-behav., cog.-behav., cog., behav., & motivational

computational practices (CSTA, 2017), especially

Collaborating ..., Testing and Refining..., and Communicating...

SEPs + EEDPs (NGSS Lead States, 2013; Rodriguez, 2015), especially...

- Using mathematics and computational thinking
- Designing solutions (for engineering)
- Obtaining, evaluating, and communicating information

CONCEPTUAL FRAMEWORK

SETTING + PARTICIPANTS

• <u>"Mills City"</u>: urban-ring city in Massachusetts

	2018	2019	
Class-periods (~55 min.)	13	14	
Students	~200	~400	
MCUs/greenhouse	1	2	
Students/greenhouse	2-3	4-5	
Schools	1	2	
Teachers	2	5	
Participant-researchers	2 / class	1 / class	
Topics	Intro, light, temp. & hum., eng. design	<same> + soil moisture</same>	

<u>Version 1</u>: growthings.netlify.com (lead: Paul Xu) <u>Version 2</u>: email Dave for a link (lead: Mike)

RESEARCH DESIGN

FINDINGS FROM ITERATION 1

Tensions in student practices, from variable- and case-based analyses

Tension	Clara & Gabriella [more engaged & simultaneous]	Faith & Taylor [more disaffected & sequential]
1. engagement Co disaffection	 Laughing about errors Focus on aesthetics Checking each other's work Helping peers 	 Playing with materials Providing emotional support Stress about grades and tests
2. sequential practices Simultaneous practices	 Disciplines initially siloed Ended with "different mixes", ~"10 minutes [at a time]" 	 Worked in parallel Connected engineering with science, but not computing
3. prior experience	 Previous experience in grade 6 <u>& club</u> Minimal use of TA Rapidity of coding, at expense of consistency with science 	 Previous experience in grade 6 <u>only</u> Frequent use of TA Quickness to claim broken items, rather than troubleshooting

IMPLICATIONS FROM ITERATION 1

(PRELIMINARY) FINDINGS FROM ITERATION **2**

Through a lens of social interdependence theory (Johnson & Johnson, 2009)...

- 1. The combination of software, hardware, and plants promoted **positive interdependence** within and between groups.
- 2. Stress and frustration sometimes impeded **promotive interaction**, but **social dynamics** and project characteristics helped to stimulate engagement.

IMPLICATIONS FROM ITERATION 2

*Maintain high-interest elements *Culturally-relevant plants *Hydroponic growing

*Promote individual accountability *Smaller groups...

*...and/or clearer scaffolds

FUTURE WORK

- Transition to **BBC micro:bits** (block AND text-based)
- Focus on **student engagement** #PhDone ③
- **Expand** to "Western US" high-school, Massachusetts high-school, Massachusetts OST (grades 7-12)...
- ...¿and beyond?

VERBOSE SCHEDULE

Table 1: Outline of smart-greenhouse curriculum intervention

<u>Days</u>	Topics	Focal practices per CSTA (2017)*	
1	Introduction to the project	Recognizing & Defining Computational Problems;	
-		Fostering an Inclusive Learning Environment	
2	Introduction to coding	Testing & Refining Computational Artifacts;	
		Collaborating Around Computing	
3-7	Light (color/s & duration)	Developing and Using Abstractions	
8-11	Temperature & humidity (fans + servos with arm attachment)	Developing and Using Abstractions	
12	Soil moisture (includes pump)	Developing and Using Abstractions	
13-14	Final adjustments &	Testing & Refining Computational Artifacts	
	troubleshooting	resung & Remning Computational Artifacts	
15	Showcase	Communicating About Computing	

*Days 3-14 implicitly involved Creating Computational Artifacts, without express emphasis.

OBSERVATION PROTOCOL (OLD)

Appendix 4: Observation Protocol: Smart Greenhouses 2019 (Take a photo of every version of the design!)

Teammates' Names_

Observer name_____

Date

RQ1. When integrating CT into a required environmental science course, how do computational practices promote or inhibit student engagement? RQ2. What is student engagement in computation? (a) How is it similar to student engagement in math and science? (b) How is it different?

÷						
	Time	Notes on student engagement (affective, behavioral, cognitive, social,)	Notes on disciplinary practices (computation, engineering, science)	Notes on equity, engagement, and diversity practices	Other notes about the team (~2-3 students)	Other notes about the full class (~20-25 students)

Reflection (continue notes and/or reflection on the next page/s if needed):

- In what way(s), if any, did computational practices seem to promote student engagement?
- In what way(s), if any, did computational practices seem to restrict student engagement?

QUESTIONS FOR YOU:

- What's your advice for engaging families remotely?
- What related literature can you recommend?
- What improvements can you suggest for our design?
- Want to correspond later? 🙂

david.jackson@bc.edu yihong.cheng@bc.edu

